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Abstract. A general algebraic formalism for studying contextual hidden variable theories 
is developed. T h e  contextuality is understood as a manifestation of an inadequacy in the 
algebra of quantum observables for the complete description of the system. It is shown 
that it is always passible to 'improve' the algebra of quantum observables. explicitly paying 
attention t o  contexts, such that this improved algebra becomes a base for a hidden variable 
theory. 

1. Introduction 

The main motivation for this work comes from hidden variable ( H V )  theories which 
are, at the statistical level, in agreement with quantum mechanics [ l ,  5 , 8 ] .  

All these theories are causal. Their common philosophy is that the quantum 
description of the world is not complete. The appearance of probabilities in quantum 
mechanics is interpreted as a consequence of this incompleteness. 

Each hidden variable theory deals with subquantum srates that are, by definition, 
complete states of the system (in this theory). If a subquantum state is fixed, the 
outcome of any quantum measurement is determined. Consequently, it is possible to 
speak about values of quantum observables in subquantum states. On the other hand, 
the quantum states appear as certain probability measures on the space of all subquan- 
tum states (subquantum space). Accordingly, there exists an analogy between the 
relation: H V  theoryequantum mechanics and the relation: classical mechanics- 
classical statistical mechanics. The subquantum space corresponds to the phase space 
in classical mechanics. 

In contrast to this analogy, H V  theories necessarily have contextual features: the 
value of a given observable in a given subquantum state is defined only after 
specification of the so-called measurement context [13]. An important fact about 
contexts is that they are in some sense external, relative to the algebra of quantum 
observables. The same observable could have different values, in a given subquantum 
state, in different contexts. 

We can understand the contextuality as a necessary consistency condition because 
it can be shown [ 3 , 7 , 1  I ]  that a H V  theory in which the mentioned values are determined 
only by subquantum states does not exist. 

Therefore, before developing some hidden variable theory, one must specify entities 
representing contexts. I n  the case of the standard quantum mechanical structure 
( H ,  P ( H ) )  (that is, pure states are represented by vectors in a separable Hilbert space 
H ,  quantum events by elements of the projector lattice P ( H ) )  i t  is supposed that each 
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quantum measurement is a minimal measurement [14] of some observable. In this 
situation, it is natural to identify the corresponding context with the range of the 
spectral measure of this observable. 

This picture can be taken as  starting point for various generalizations. The quantum 
logical one can be obtained by recognizing contexts as Boolean sub-u-algebras of 
P ( H )  and replacing the projector lattice P ( H )  by some weaker structure (see [SI). 
We can also proceed algebraically [SI, recognizing contexts in the case of the standard 
quantum structure as commutative von Neumann subalgebras of the algebra L( H )  of 
all bounded operators, because in the case of a separable Hilbert space H there is a 
natural bijection (bicomutant): 

{Boolean sub-u-algebras of P ( H ) ]  

+{commutative von Neumann subalgebras of L ( H ) ) .  

In this paper, we develop a general C* algebraic formalism for treating contextual 
hidden variables. We start from some C* algebra Z (algebra of ‘quantum observables’) 
and some family T of commutative C*-subalgebras of Z (‘measurement contexts’). 
The possibility that observable 6 E Z shows, on the subquantum level, different faces 
if we use different contexts A , ,  A, E T, 6 E A , ,  A,, is understood here as an inadequacy 
of the C* algebra Z for the complete description of the system. This thinking naturally 
leads to the idea of replacing the algebra Z by some ‘finer’ algebra Z’ in such a way 
that contexts are explicitly taken into account. 

In section 2 we formalize this idea of contextual refinements introducing a notion 
of contextual extension. We consider the collection of all contextual extensions of a 
given pair (Z, T )  and show that there exists ‘the biggest’ one. The corresponding C* 
algebra (denoted by Ctx(Z, T ) )  will play an important role throughout the paper. 

In section 3 we discuss problems related to hidden variables. From the point of 
view of hidden variables, not all contextual extensions are relevant. Roughly speaking, 
we have to restrict ourselves to contextual extensions in which all ‘quantum states’ are 
reducible to some mixtures of ‘subquantum states’. The precise formulation of this 
property leads to a notion of H V  extension (definition 3.1). We show that algebra 
Ctx(Z, T )  naturally gives rise to a H V  extension of (2 ,  T ) .  We then investigate some 
properties of the collection of all H V  extensions of (Z, T ) .  

We shall deal only with C* algebras with unity and with unity-preserving 
homomorphisms. 

2. Contextual extensions 

To begin with, let us fix a C* algebra Z and a family T of commutative C* subalgebras 
of 1. We shall suppose only that T generate Z. For A E T we denote by i,, : A + 1 
canonical inclusion. 

Definition 2.1. A contextual extension of (1, T )  is a triplet (E’, 4, (L, , :  A E  T ) )  where 
( i )  Z‘ is a C* algebra with unity; 
(i i)  4 :Z ’+Z is a C* homomorphism; 
(iii) { L,,: A E T )  is a family C* of homomorphisms 

(iv) a family {L,,(A): A E  T )  generate Z’. 

: A  + Z’ such that @L,, = i,, for 
any A E T ;  
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As an immediate consequence of this definition, and of the fact that the image of 
a C* homomorphism is closed [4], we obtain the following. 

Proposition 2.1. Let (Z', 4, { L ~ :  A E T } )  be a contextual extension of (Z, 7'). Then 4 is 
surjective and maps isomorphically iA(A) onto A, for any A E T. 

Now, we are going to introduce an important example of a contextual extension. 
Let Ctx(Z,  T )  be the C* algebra generated by the set of elements S =  
{(6, A ) :  A E  T, a * €  A} and the following relations: 

( 1 , A ) = l  

(6, A)* = (a**,  A ) .  

More precisely, we consider first the free * algebra generated by elements of S. 
Then we factorize through the two-sided * ideal generated by relations (1). Let K be 
a * algebra obtained in this way. A seminorm p :  K + Rt is called admissible iff there 
is a * representation ?r : K + L( H) of K by bounded operators in some Hilbert space 
H such that p ( x ) =  l ln(x)1lH for all X E  K .  We define a seminorm /I ( 1  on K:  llxll= 
sup,(p(x)), where the supremum is taken over the set of all admissible seminorms. 
(It can easily be shown that llxll is finite for each X E  K ) .  Obviously, the characteristic 
C* property of this seminorm IIx*xII = IIxII* is fulfilled. To get a norm, we consider 
two-sided ideal N = { ~ E  K: Ilxll=O}. On the factor algebra K I N  there is a natural 
norm, induced by 11 11. Finally, we complete K," and get C* algebra Cfx(1, 7'). 

By construction, any A E  T gives rise to a C* homomorphism t A : A +  
Ctx(1, T): C A ( a ) = [ ( a ,  A)]. Everywhere dense * subalgebra K I N  of Cfx(1, T )  
coincides with the * subalgebra generated by elements of the form t A ( a ) .  

Proposition 2.2. (i) Let 1' be a C* algebra and suppose that for each A E  T a * 
homomorphism A A : A + Z '  is defined. Then there exists one, and only one, * 
homomorphism A : Ctx(Z,  T )  + Z' such that A A  = AtA for every A E T. 

(ii) If {AA(A): A E  T) generate algebra X', then A is surjective. 

ProoJ The existence and uniqueness of A is an immediate consequence of the definition 
of Ctx(X, T )  and the fact that each C* algebra can be realized as a C* algebra of 
bounded operators in some Hilbert space. (For example, take the direct sum of all 
cyclic representations). If (AA(A): A E T }  generate Z', then the image of A is everywhere 
dense in Z'. On the other hand, it is closed as an image of a C* homomorphism. Thus, 
A is surjective. U 

Example 1. Let 1 ' = X  and A A  = iA .  Proposition 2.3 implies that there exists one, and 
only one, surjective * homomorphism 6 : C f x ( Z ,  T )  + X such that 4( t A ( 6 ) )  = a*. 

Example 2. For each A E T consider the spectrum spec(A). Algebra A is then naturally 
isomorphic to the algebra of all complex valued continuous functions on spec(A). Let 
II, = ll,,, spec(A), and endow it with the Tihonov product topology. In this topology, 
II, is a compact topological space. Condition ( i )  of proposition 2.2 is satisfied by 
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puttingL'=C(n,)  and A,(i?)(x) = ~ ( T , , ( x ) ) .  Here, .rr,:n,+spec(A) is the Athcoor- 
dinate projection and i? is considered here as a function on spec(A). Condition (ii) is 
also satisfied because * algebra generated by functions Aa(6) distinguishes points of 
nr and, according to the Weierstrass-Stone theorem, it is everywhere dense in C(n,). 
Therefore, there exists a natural surjective C* homomorphism i: Ctx(Z,  T)+ C(n,). 

As a simple consequence of proposition 2.2 and example 1 we obtain the following. 

Proposition 2.3. (i)  The triplet ( C t x ( Z ,  T ) ,  f ,  {CA: A E  TI)  is a contextual extension of 
@,TI .  

( i i )  If (Z', 4, {L,,: A E T } )  be a contextual extension of (X, T )  then there exists one, 
and only one, * homomorphism A' :  Ctx(L ,  T )  + L' such that L~ = A';,,, for every A E T. 
The map A '  is surjective. 

It is of some interest to introduce a cafegory CTX(Z ,  T )  of all contextual extensions 
of (1, T ) .  Objects in this category are contextual extensions and we define a morphism 
of two objects (Z,, @,, ( 1 ; :  A E  T } )  and (X2, d , ,  {L;: A E  T } )  as a * homomorphism 
A , , 2 : X , + L 2  with the property L ~ = A , , ~ L ~ ,  for every A E  T. Such a homomorphism is 
necessarily surjective. If it exists, it is unique. 

The category C T X ( P ,  T )  possesses the first and th,e last object: The first object is, 
according to proposition 2.3, the triplet (Ctx(1, T ) ,  4, ItA: A E  T } ) .  The last object is 
the triplet (Z, id, { i A :  A E T } ) .  

3. Contextual hidden variables 

In this section we analyse hidden variables from the point of view of contextual 
extensions. A given contextual extension (Z', 4, { L ~ :  A E T ) )  becomes a base for some 
HV theory only if each state on Z can he reduced to a mixture of 'subquantum states'. 
These states, of course, should enter the game via the algebra of 'right' observables Z'. 

'Subquantum states', as complete states of the system, can be characterized by the 
p:openj of harifig zeroth dispersinn in any obscrv&!e frnm 1'. !! is ezsy !e see !ha! 
Characters (non-trivial multiplicative *-functionals) are the only states of this kind. 

Let n(z? denote the set of all characters of Z', endowed with the *-weak topology. 
The space n(Z') is compact. Let k(L') be the ideal generated by commutators. There 
is a natural surjective C* homomorphism e' :  L'+ C[fl(X')] defined by e ' ( a ) ( x )  = x ( a ) .  

Example 3. I t  is easy to see that n [ C t x ( X ,  T ) ]  = I t r .  

Definition 3.1. A contextual extension (Z', 4, {L,,: A E  T } )  of (Z, 7') is called an H V  

exfension iff for any state p on I there exist a t  least one state p' on Z' such that: 
(i) P ' I ~ , Z . ~ = O ;  

(ii) For any A E  T a n d   EA, p'( i , ,( i?))=p(i?). 

Remark (justification ofdefinition 3.1). Let (2'. 4, {L,,: A E TI) be an HV extension. As 
we already mentioned, elements of the space n(Z') are interpreted as possible complete 
states of the system. It is natural to introduce, for a given w E n(Y), A E T and i? E A, 
a value f A ( i ? ) ( w )  of observable 6 in state w relative to context A: f A ( a ^ ) ( w )  = w ( L A ( ~ ? ) ) .  
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According to definition 3.1, for any state p on L there is a state p' on X' which can 
be projected to Z ; ' / k ( X ' ) =  C[n(Z')J such that p ' ( ~ ~ ( a ^ ) ) = p ( a ^ ) .  This equation can be 
rewritten in the form p ( d )  = I  F A ( 8 ) ( w )  dp'(w), where the integral is taken over fl(2') 
and p' is the probability measure on the Bore1 v-field of n(L') which, according to 
the Riesz theorem, corresponds to the projected p'. Thus, any 'quantum state' can be 
interpreted as some 'lack of knowledge' about variables w E CL(X'). 

Proposition 3.1. The triplet (Cfx(X,  T ) ,  6, { C A :  A E  T)) is an HV extension. 

Proof: Let p be a state on Z. We know that the algebra Ctx(X, T) is linearly generated 
by elements of the form ( a ^ , ,  A , ) .  ..(in, An).  It i s  easy to see that the formula 
p'[(a*, , A , ) .  ..(in, A,)] = p ( 8 , ) .  . . p(8,) consistently and uniquely defines a state p' 

U 

The next proposition connects HV extensions with certain ideals in algebra 

on Ctx(X, T )  with desired properties. 

CtX(X, T ) .  

Definition 3.2. An ideal J in Crx(Z, T) is called H V  admissible iff: 
(i) J c k e r d ;  
(ii) For any state p on Z there is a state p on Cfx(X,  T )  such that pi ,  =0, 

PI*[cix(x.r)i = O  and f i r ( ; ,  A ) ]  = ~ ( 6 ) .  

Proposifion 3.2. Let (L', 4, ( L ~ :  A E  T}) be an HV extension and A ' :  Ctx(Z, T ) + X '  a 
homomorphism introduced in proposition 2.3. Then J = ker A'is an HV admissible ideal. 

Converseiy, iei J be an HV admissibie ideai. We define-2'= Crx(Z, TjiJ, a map 
A':Ctx(X, T)+X'asprojection,amap d,:X'+Zbyequality Q=QA'andmaps{iA: A E  
T )  by equality iA = h'CA. Then the triplet (X, 4, { L ~ :  A €  T ) )  is an HV extension. 

Proof: Let (2, 4, {la: A E T}) be an H V  extension. For any state p on X there is a state 
p 'onL'suchthat p ' l h ( = ) = O , p ' ( ~ A ( a ) ) = p ( u ) .  Defineastatepon Cfx(Z,  T )  byp=p'A'. 
The map A '  is surjective. Therefore we have A'k[Ctx(S, T ) ]  = k ( X ' ) .  We conclude that 
fil, = 0, p[k , c , y ,x ,T j l  = 0 and p[ (8 ,  A)] = ~ ( 8 ) .  Thus, J is HV admissible. 

Let J be an H V  admissible ideal in Ctx(X, T ) .  Then any state p from definition 3.2 
can be projected to a state p' on E' satisfying p'(kix:.i=O, p'(iA(a*))= @[(a*, A ) ] =  ~ ( 8 ) .  

0 

Proposifion 3.3. Each H V  admissible ideal in Cfx(X,  T )  is contained in some maximal 
HV admissible ideal. 

Proof: Consider an arbitrary ord-mily {J<,; a E I, n < p+J,, 2 .I0) of HV admiss- 
ible ideals in Ctx(X, T). Let J =U,,,, J,. We shall prove that J is also an HV admissible 
ideal. 

It is clear that J c ker 6. For any state p on 1 and a E I, there is a state p:, on Z' 
with property p;,[(ri,A)]=p(a^), p& =0,  p : . ~ h [ ~ l r l ~ . r , ~ = O .  The set of all states in 2' 
i s  compact in the *-weak topology. Consequently, a hypersequence {pcv; a E I )  has a 
convergent subsequence, which converges to some state p'.  It is  easy to see that 
p'l, = 0,  p'lxrlc,,lz, r,l  = 0 and p ' [ (  8, A ) ]  s p(  8). The statement of the proposition follows 
P.GW fro- the !emma nf Znrn. 

We conclude that (L', Q, {iA: A E  T}) is an HV extension. 
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I n  the rest of this section we discuss properties of a collection of all H V  extensions. 
They form a complete subcategory of CTX(E, T ) ,  which we denote by HV(E, T ) .  
According to proposition 3.1, this category has the initial object (Ctx(E, T ) ,  6, { C A :  A E 

An object in HV(E, T )  is called maximal iff the only morphisms starting from it are 
isomorphisms. Maximal objects in HV(& T )  corresponds to maximal H V  admissible 
idealsin Ctx(E, T).According toproposition3.3,forany Hvextension(Z,, & , { L ; :  A E  
7'))  there exists a maximal HV extension (E2, b2, { L : :  A E  T)) and a * homomorphism 
A, ,2:E,+Ez with the property ~ a = A , p ! . , .  

The structure of maximal H V  extensions is particularly simple in  the case when the 
algebra E has no characters. For example, the algebra L( H), where H is a Hilbert 
space, has this property. 

Proposition 3.4. Let (X', 4, { L ~ :  A E  7')) be a maximal H V  extension and Z a C* algebra 
without characters. Then the direct sum of maps e '++:Z '+  C[Ct(Z')]+Z is an 
isomorphism. 

Proof: Firstly, e '+  4 is always surjective. This follows from the surjectivity of e' and 
the fact that ( e '+  +)[k(E')] = (0, k(E)) = (0,X).  To prove injectivity, let us consider a 
map A ' :  Cfx(E, T ) + Z '  introduced in proposition 2.3. An ideal J =A'-'[ker(e'+$)]= 
A'-'[kere']nA'-'[ker4] is H V  admissible and k e r h ' s  J. On the other hand, 
(E', 4, { L ~ :  A E T } )  is maximal. This implies J = ker A '  and we conclude that e ' +  + is 

r}) .  

injective. 0 

Finally, it is interesting to see how relations between different HV extensions are 
reflected at the level of 'subquantum spaces': Suppose that H V  extensions 
@ , , @ , , { L ; :  A ~ . i j j  and ( X 2 , + l , { ~ i : A ~  TI)  a n d a  homomorphismA,,z:Z,-,Z, with 
the property L; = A 1 , 2 ~ a  are given (a morphism in HV(Z, T ) .  Then we can define a map 
ACz:Cl(X2)+Ct(Z,) by A ~ z ( ~ ) ( ~ ) = w [ A 1 , 2 ( ~ ) ] .  w ~ C t ( 2 ~ ) ,  XEE,.  This map is con- 
tinuous and injective, because A , , 2  is surjective. I n  particular, any subquantum space 
can be naturally seen as a closed subspace of n,. Maximality of an H V  extension 
(Z', 4, { L ~ :  A E  7')) implies therefore minimality of the space Ct(Z') in n,. 

4. Conclusion 

In this paper we have shown, in the full generality, that it  is always possible to construct 
an extension X' of an algebra of observables Z such that a theory formulated on Z' is 

mechanism. 
Unfortunately, if we confine the formalism presented here to the quantum mechanics 

and take into account an assumption of (subquantum) locality, we find it satisfactory 
only at the one-particle level: At the many-particles level we meet the problem of 
(non-)locality which, due to'Bell's inequalities [2] can not be overcome. In other words, 

not possible. 
However, a more careful analysis shows that in all derivations of Bell's inequalities, 

besides the locality assumption, some assumption about statistics appears. More 
precisely, it is true that any local H V  theory based on classical statistics satisfies Bell's 

a,id ;,iterpietis all stoi~asii i i iy inhiiiiit in via ;ack.of.kno.iilidge 

" 1^^^1 .... .L ---.. -r,l.- I..".. ^F ^ ^ _ ^  ... I oY+PnCinn /in ,he CPnCII ,.< A..finitinn 7 ,> iC 
n lUCLll n"  L I I C U L J  U1 L l l C  'JP'C V I  aul i l s  n "  I A L . l l a l " 1 .  , , I %  L l l r  >Ll.>C "I "-I....L.V.. -'..I I I  
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inequalities. On the other side, it is not true that any local H V  theory satisfies Bell’s 
inequalities. Pitowsky [I21 and Gudder [9,10] have constructed examples of local H V  

models, based on a generalized statistics, which are in agreement with quantum theory. 
A generalized concept of probability can be incorporated in the formalism of H V  

extensions. It turns out [6] that after a suitable modification, this formalism becomes 
explicitly local and covariant. 
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